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ABSTRACT 
 
Turbomachines, from automotive turbochargers to jet engines to large steam turbines, use alternating 
rows of stationary and moving blades to compress (and do work on) or expand (and extract work 
from) a working fluid. After more than a century of development, turbomachines are highly efficient, 
and further improvements in efficiency are hard to achieve. 
 
The key simplifying assumption in the analysis of the flow in turbomachines has always been that the 
inherently unsteady flow in the machine can be treated as steady when viewed in the rotating 
reference frame of each blade row. The designs of all of the most efficient machines now in service 
have been made using this steady flow assumption. Further increases in efficiency may now come 
only if we are willing to move on to unsteady flow analyses—which can be orders of magnitude more 
expensive than unsteady analysis—and require massive computer resources. 
 
This paper illustrates the challenge of such calculations, via the computational analysis of the flow in 
the front stages of an aircraft low pressure turbine. We discuss three challenges: (1) scaling down the 
calculation—without losing fidelity—to fit the available computer resources; (2) scaling up a CFD 
flow solver to perform well on thousands of processors on a machine like Jaguar at Oak Ridge 
National Laboratory; and (3) mining the terabytes of solution snapshots to obtain not only some 
overall performance numbers, but—more important—an understanding of how the unsteady 
interactions between blade rows can help us design more efficient and more durable machines.  
 
INTRODUCTION 
 
Turbomachines are an essential part of modern life. Almost all the world’s electricity production is 
via turbomachinery: steam turbines, gas turbines, hydraulic turbines, and, more recently, wind 
turbines. Air transport became what it is today because of the shift from reciprocating I.C. engines to 
gas turbines in the nineteen fifties. 
 
The classic turbomachine has one or more stages, with each stage comprising a rotating row of blades 
(rotors), preceded or followed by a stationary row of blades (stators). Here the wind turbine is 
unusual—the stator is missing. Each stage either does work on the fluid passing through it, raising the 
pressure and temperature of the fluid (compressor), or extracting work (turbine). Multiple stages are 
frequently stacked on the same shaft. In its simplest incarnation, for example, a jet engine compresses 
air via a multistage compressor, burns fuel in the compressed airstream, and expands the air through a 
multistage turbine, with the shaft power produced by the turbine driving the compressor. Leftover 
energy in the air stream is used to propel the airplane. 
 
Turbomachines in a recognizably modern form have a long history. The axial flow steam turbine, for 
example, first appears in the late 19th century (Parsons), and a practical axial flow compressor around 
1940. The General Electric Company has been building turbomachines since the early 20th century 
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and today is a major producer of turbomachines for electric power generation and air transport. Given 
their long history, it is to be expected that turbomachines have evolved to high levels of efficiency, 
power density and durability. This is the case, despite the fact that digital computers only appeared 
relatively late in the development of these devices. Improvements were—as for any engineering 
discipline—partly experimental and partly analytical. The analytical approach relies on a series of 
simplifications, such that design can proceed in phases: (1) a simple block diagram (e.g., compressor 
→ combustor → turbine); (2) one-dimensional models of each component, in which each blade row 
becomes an “actuator” that changes the flow in some defined, but highly simplified, way and passes 
the flow to the next row; (3) simplified two-dimensional models of the flow field in a blade row (with 
the third dimension that is dropped being either the spanwise or circumferential direction); (4) fully 
three-dimensional analysis of the flow in a blade row; and (5), more recently, three-dimensional 
analysis of the flow in multiple blade rows. The more complete the analytical model, the greater the 
necessity of computation. All turbomachinery design today is based on passing through these phases 
 
The flow in a turbomachine is inherently unsteady; it is the unsteady nature of the flow that enables a 
turbomachine to compress or expand a fluid without a complex system of opening and closing valves 
of the sort seen in an internal combustion engine. Yet the design of turbomachinery has proceeded 
from the beginning up to the present without considering the unsteadiness of the flow. The reason is 
that the analyst, in each blade row, sits in the (half the time rotating) reference frame of each blade 
row, and assumes the flow to be steady in that reference frame. A rotating reference frame is, of 
course, non-Newtonian, but that is readily taken care of via some additional acceleration terms 
(centripetal, Coriolis). I do not know when, or by whom, this simplification was first explicitly 
invoked, but it is ubiquitous and has proven to be very powerful. Denton [1] has recently stated that 
“the assumption of steady flow in multistage calculations is a source of error whose magnitude is not 
fully understood.” Similarly, He [2] said: “It is this basic single-passage steady flow model that has 
dominated turbomachinery flow analysis in a design environment for the past 40 years.” 
 
The assumption of steady flow in each blade row ignores some important phenomena. Each blade in a 
blade row produces wakes that pass downstream into the next row. Since the downstream row is in 
motion relative to the upstream row, the flow in the downstream row must be unsteady. Similarly, a 
blade row in which the flow is partly supersonic may produce shock waves that propagate upstream 
into the preceding row, again producing an unsteady flow. In order to maintain the useful fiction of 
steady flow, the flow at the interfaces between blade rows can be averaged in the circumferential 
direction (or, equivalently, averaged in time) as data is exchanged between blade rows. The 
assumption of steady flow enables one further simplification, beyond removing time from the 
analysis. Since the flow in a blade row is steady, and since all blades in a row are identical, it is 
possible to confine the analysis in a blade row to a single passage between a pair of blades.  The 
multiplicity of identical passages is accounted for by invoking a form of symmetry boundary 
condition at the interfaces between adjacent blade passages. The resulting formulation gives rise to 
what is termed “steady multistage” analysis. This is the standard approach to turbomachinery design 
today and is the paradigm referred to by Denton and He above. A great deal of research has been 
devoted to devising averaging schemes at the interfaces between blade rows that enable steady 
multistage calculations to match experimental data. 
 
There are situations in which unsteady flow effects are known to be important and in which unsteady 
flow effects must be taken into account. One is blade flutter—the spontaneous (and possibly 
catastrophic) self-excited blade vibration induced by the flow. Another is “forced response,” in which 
the frequency with which the upstream wakes pass through a blade row coincides with one of the 
fundamental vibration frequency of the blades, resulting in a resonant response, and possibly 
vibratory stress levels that can lead to fatigue failure. Specialized techniques exist for analyzing these 
cases—a frequency domain linearization of the governing equations for flutter (valid since the self-
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excited vibrations grow exponentially from infinitesimal amplitudes), a so-called gust response 
approach for forced vibration, by means of which one is still able to restrict analysis to a single blade 
passage in one row, although time has to be introduced. A third area in which unsteady calculations 
are coming into use is in the prediction of blade surface temperatures in the rotating turbine stages 
immediately behind the combustor of a gas turbine or jet engine. Accurate predictions of these 
temperatures is critical to designing blades that can simultaneously withstand the extreme stresses and 
temperatures. Here it has been demonstrated [3,4] that moving from a steady to an unsteady analysis 
can change temperature predictions by hundreds of degrees. Analyses of this type are now seen as 
essential, albeit under some restrictive assumptions that make the analysis affordable. Some other 
efforts to explore the effects of unsteady flows are listed in references [5,6,7,8,9]. 
 
Large, multistage unsteady calculations can be justified in an industrial environment only if they 
return information valuable to the designers at an affordable cost. The cost is twofold: the direct cost 
of the computation and, more important, the cost of the lost time in the design cycle. It is a fact that 
turbomachinery designers have to live with that companies want to improve already good designs 
(thus requiring ever more sophisticated analysis) using ever fewer engineers, and without lengthening 
the time period between launching the design project  and delivering the first engine. This paper 
reports an attempt to determine whether a large unsteady multistage calculation can today meet two 
criteria: (1) that the differences between the steady and unsteady calculations tell designers something 
new and useful and (2) that the calculations can be completed on currently available machines in a 
short enough time that an industrial organization would contemplate doing them on a regular basis as 
part of the design process. 
 
The component selected for this investigation is the low-pressure turbine of a large, high-bypass ratio 
jet engine. 
 
LOW-PRESSURE (LP) TURBINE 
 
An aircraft engine low-pressure turbine is a critical component, as it drives the large diameter fan that 
propels the airplane, and the LP turbine is our last chance to extract power from the gas stream 
(Figure 1). We wish to explore the impact of unsteady flow analysis on our understanding of this 
engine component—both in terms of overall quantitative assessments (e.g., efficiency) and in terms 
of furthering our understanding of the fundamental flow physics. 
 
A typical LP turbine may have up to seven stages (14 blade rows). Each blade row will have around 
100 blade passages. If each blade passage is meshed using 3 million grid cells, we obtain an overall 
mesh count of around 5 billion grid cells. If we were to require 100,000 time steps to reach a periodic 
state at which we can begin to query the solution, we would require 5 x 1014 unit operations—where a 
unit operation advances one grid cell one time step. The equations are nonlinear, and each unit 
operation involves many inner iterations. If we are to use unsteady simulations as a practical design 
and analysis tool, we need to simplify, even on the largest of current machines like Jaguar. 
 
Our first simplification involves analyzing only four stages. The four stages are from a turbine test 
rig, with blade designs representative of the front stages of a modern aviation LP turbine. The second 
simplification is to adjust the blade counts. If the number of blades in a row were the same for all 
rows, we would only need to analyze the flow in one passage for each row, even when the flow is 
unsteady. Unfortunately blade designers are indifferent to the needs of computational analysts: there 
are good reasons for having different numbers of blades in each row, driven by the need to avoid 
forced vibration problems. If, however, the blade counts in each row were different but shared a 
common factor S, it would be possible to analyze only a fraction 1/S of the full annulus.  What we do 
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is to take the existing blade counts and ask what is the minimal shift in the blade counts needed to 
produce a significant common factor. Then we go back into the design system and produce a closely 
related design with this common factor. In this case we were able to come up with a common factor 
of 14 and thus analyze only 1/14 of the annulus. This allowed analysis of only 67 blade passages in 
the eight blade rows, with a total grid count of around 200 million cells (Figure 2). At this scale we 
felt that we had a good compromise between degrading the fidelity of the simulation (primarily 
because of the shifts in blade counts to make a limited sector analysis possible) and making the best 
use of the available CPU-hours. 
 
Details of the solution setup for this case will be deferred until after a brief description of the flow 
solver. 
 
FLOW SOLVER 
 
The flow solver TACOMA has been under development at General Electric Global Research for 
sixteen years. It comprises almost 500,000 lines of code, from twenty or more authors. The equations 
solved are the steady, Reynolds-averaged Navier-Stokes equations (RANS), or the unsteady, 
Reynolds-averaged Navier-Stokes equations (URANS). TACOMA is a density-based, multiblock 
time-marching code using the well-established Jameson, Schmidt, Turkel (JST) algorithm [10]. 
Available turbulence models include several flavors of Wilcox’s (k,ω) model [11] and Menter’s SST 
model [12]. A two-equation transition model due to Menter is available [13]. Gas models include a 
fully perfect gas, a perfect gas in which the specific heat ratio is a linear function of temperature, and 
any gas model for which the user is able to supply C0 or C1 continuous tables of selected gas 
properties in the form  c= f(a,b)—for example, pressure as a function of density and internal energy. 
A nonequilibrium wet steam model due to Gerber [14] is also available. Unsteady solutions are 
obtained using Jameson’s dual time-stepping algorithm [15]. The code can provide steady solutions 
for a single blade passage (the workhorse application); quasi-steady multistage solutions using a 
variant of “mixing planes” to deal with the task of averaging out the unsteadiness at the interfaces 
between blade rows in the most physically useful way; single blade row unsteady solutions using a 
“frozen gust” input; multistage unsteady solutions using sliding mesh interfaces; linearized frequency 
domain solutions for blade flutter; and more. An analogous unstructured grid code is under 
development, to which TACOMA can be tightly coupled. 
 
Parallel solutions are obtained by domain decomposition, and communication between processors is 
handled using MPI. The code contains over one thousand calls to MPI routines. Load balance is 
achieved by assuming that load is simply a function of the number of grid cells on a processor. Grid 
blocks are assigned to processors via a simple greedy algorithm: assign the largest unassigned grid 
block to the least loaded processor; repeat. 
 
One aspect of the load balance/domain decomposition issue may be of interest. In a single blade 
passage, containing of order 3 million grid cells, the grid cells may be grouped in of order 10 to 20 
grid blocks, each a structured three-dimensional array of cells. If we want to run on one hundred or 
more processors per blade passage, the ten or twenty grid blocks must be split. The number of 
possible combinations of block splits is large—easily more than 10100. Thus, though we have finessed 
the NP complete problem of block-to-processor assignment via our crude but effective greedy 
algorithm, we have created another probably NP complete problem of deciding the optimum block 
splitting. If we think of grid blocks as rocks and pulverize them to gravel, our greedy algorithm gives 
excellent load balance—at least as we have defined it. Gravel, however, entails a massive 
communication load between the small pieces. What we need is a block split that gives the largest, 
most compact pieces (and thus the lowest additional communication load) with adequately uniform 
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processor loads. We know of no algorithm analogous to our simple assignment algorithm that will 
give an acceptable solution. What we do is to enlist every available processor at the start of the run to 
do some searching. If each blade passage in a row owns 100 processors, and there are ten passages in 
the sector of the annulus we are analyzing, we have 1,000 processors available to us. If each 
processor searches 1 million block splits (taking only a few seconds to do this), we can search a 
billion candidate block splits. Obviously, 1 billion is obviously not 10100. But we let the processors 
search systematically through half a billion of the lowest-order split combinations, with each block 
split into one, two, three, etc., pieces (remember that the multiplicity of solutions lies not in the 
individual block splits but in the combinations of splits). The remaining half-billion split 
combinations to be tested are selected by a Monte Carlo method, with a simple function biasing the 
random selection of splits toward the simplest splits. There is no way of knowing, of course, how 
closely this simple algorithm approaches the optimal split, but it observed that if we list the 100 best 
splits, they are all very, very similar in terms of load balance and communication cost. Also, 
increasing the number of searches each processor does by a factor of 10 usually does not provide 
more than a marginal improvement in the quality of the result. 
 
Further improvements are possible. Clearly, a more effective load balance metric is desirable, one that 
includes the cost of the noncommunication boundary conditions at the grid block surfaces: flow inlet, 
flow outlet, walls, and so forth. Another attractive option is that if we have N processors available, we 
could task each processor with performing a serial METIS [16] assignment on the N most promising 
split combinations that are derived on the Monte Carlo/greedy approach and pick the best of those. 
 
As currently configured, the code provides acceptable scaling down to the level of approximately 
30,000 grid cells per processor. We are sure we can do better. 
 
SOLUTIONS ON JAGUAR 
 
Solutions were obtained on Jaguar at Oak Ridge National Laboratory, under a 2-million CPU-hour 
Director’s Discretionary Grant. Minimal code changes were required to compile and run on Jaguar. 
 
Each of the 63 blade passages was meshed with approximately 3 million cells, using our standard 
meshing techniques. The grids had smooth endwalls: to minimize grid counts, we omitted the 
complex cavity geometries of the tip clearances over the shrouded rotors and the purge cavities at the 
blade roots. The runs were made with the SST turbulence model, plus a two-equation transition 
model. The inlet boundary conditions were taken from probe rakes at the inlet to the first stator, taken 
from the rig test. These included spanwise profiles of total temperature, total pressure, and swirl 
angle; all profiles were uniform in the circumferential direction. The exit boundary condition was a 
specified static pressure. One thousand time steps were used for a 1/14 wheel rotor sector to pass a 
1/14 wheel stator sector, or 14,000 time steps per wheel revolution. Each time step was set to use 
thirty inner iterations. 
 
Jaguar runs were made on approximately 8,000 processors, giving a per processor load of roughly 
25,000 cells. The solution is started from the quasi-steady multistage solution. The unsteady solution 
was deemed to have converged when the unsteadiness settled down to a periodicity of 1,000 time 
steps—the time taken for a sector passing. This is easily observed by outputting a 1,000-time step 
moving average of key quantities, such as the exit mass flow, average exit total pressure, and average 
total pressure at the exit of each blade row. When the solution is periodic, these averages are flat, and 
vice versa. It was at first surprising that the solution stabilized in only 6,000 time steps—or less than 
one-half of a wheel revolution. A better time scale than the rotation period is the throughflow time—
the approximate time a fluid particle takes to pass from the inlet to the first stator to the exit of the last 
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rotor. On this scale 6,000 time steps represents between twenty and thirty throughflow times, and 
convergence on this time scale looks more plausible. Once a periodic state was reached, two further 
runs, each of 1,000 time steps, were undertaken. In one the code created a 1,000-time step average of 
the unsteady solution, for direct comparison with the steady multistage solution. In the second, 
solution snapshots were captured over 1,000 time steps, at an interval of five time steps, or 250 
snapshots in all. This was a compromise between sufficient time resolution of the unsteady flow for 
visualization, and excessive data storage requirements. The total storage required for the snapshots 
was approximately 3.5 terabytes. All these runs consumed about half of our allocation. Convergence 
to a periodic state over 6,000 time steps required approximately 60 wall-clock hours. Each additional 
run for 1,000 time steps required approximately 10 wall-clock hours. , the total solution time was 
around 80 hours on a small fraction—around 3.5%—of the available processors on Jaguar. 
 
For the second half of our allocation we repeated the calculation, but this time allowing for the 
presence of twelve mid-frame struts ahead of the turbine (Figure 3). The struts interact with the 
unsteady flow from the upstream high-pressure turbine and produce strong wakes. Our assumption of 
circumferential nonuniformity of the inlet boundary conditions eliminates the strut wakes from the 
calculation. By a careful combination of experimental data obtained from probes between the strut 
and the first stator (the inlet surface for our first calculation above), and unsteady CFD involving the 
high-pressure turbine rotor upstream of the strut and the strut itself, we were able to reconstruct our 
best estimate of the circumferential variation in the upstream boundary conditions at the inlet to our 
domain—scaling, of course, to a 1/14 wheel sector. Variations of total temperature, total pressure, and 
flow angle are shown in Figure 4. This calculation also converged quickly, in 6,000 time steps. 
 
SOLUTIONS 
 
Turbomachinery designers use CFD for several purposes: (1) to provide absolute performance 
predictions (not usually seen as reliable); (2) to provide relative performance predictions when 
comparing design iterations (critical for the design process); and (3) to provide designers with a 
microscope to examine—and thus understand—the flow field with a resolution, and at a cost, not 
available in an experimental test. 
 
In terms of absolute performance, the results obtained are, in a sense, remarkable. In going from a 
steady to the first unsteady analyses, the efficiencies of the four individual stages of the turbine do not 
shift by much more than one percentage point, and the overall efficiency of the four stage turbine 
does not shift at all (Table 1). The shifts in going from the unsteady calculation without strut wakes to 
the calculation that includes the strut wakes are of similar magnitude. This is a validation—in this 
case, at least—of the usefulness of the assumption of steady flow in the relative frame. This is a 
negative conclusion, perhaps, but nevertheless useful. 
 
Figure 5 shows contours of static pressure at 20% of the span, for three cases: (1) the steady 
multistage analysis and two instantaneous snapshots from the unsteady analysis, (2) with the strut 
wakes, and (3) without the strut wakes. At the resolution of the figure it is impossible to discern any 
differences between the three images. Since it is primarily the pressure forces at the blade surfaces 
that drive the turbine and produce the exchange of power between the gas stream and the shaft, this is 
in accord with the minimal shifts in efficiency noted above. 
 
Figure 6 shows contours of entropy at 20% span. In the steady multistage solution the blade wakes 
are mixed out at each interface between blade rows. This behavior is consistent with the mixing plane 
assumption of the steady multistage model. In the first unsteady solution, the wakes are seen to persist 
in, and to move unsteadily through, the downstream blade row. In the second unsteady solution, the 
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wakes of the strut, marked by high entropy, persist throughout the turbine, moving diagonally from 
upper left to lower right of the picture. Much other detail can be seen as well, detail that images of 
this size cannot do justice to. In the leftmost row of stators, for example, immediately behind the 
strut, the stator blade fully bathed by the strut wake shows a clear pressure side separation. But, again, 
the effect of this detail on the overall performance is minimal 
 
Figure 7 shows spanwise profiles of entropy at the inlet to the turbine and at the exit of each blade 
row. The stators are labeled LPN*; the rotors LPR*. The solid lines are from the steady multistage 
calculation. The dashed lines are from a time average of the first unsteady calculation (inlet boundary 
condition varying in span only; no strut wakes). The steady increase in entropy from inlet to exit is, of 
course, to be expected. What is notable is that, at each blade row exit, the unsteady solution shows 
more entropy at mid-span and less entropy near the endwall (0% and 100% span). This does not mean 
that in the unsteady solution more entropy is generated (i.e., there is more loss) at mid-span than in 
the steady multistage solution, and vice versa near the endwalls. What we are seeing are the effects of 
spanwise mixing that is included in the unsteady solution and missing in the steady multistage 
solution. In the unsteady solution higher entropy fluid is being transported from the endwalls toward 
mid-span. 
 
A wealth of other information can be mined from the unsteady solution snapshots and from their time 
averages, and many questions remain to be answered: 
 

• How much does the unsteady flow increase the mixing of the higher loss fluid near the 
endwalls into the relatively clean flow at mid-span? 

 
• Does the transition model properly predict the influence of the upstream blade wakes on the 

transition from laminar to turbulent flow? 
 

• How do the secondary flow vortices near the endwalls behave as they pass from one row to 
another? 

 
Mining of the “data” contained in these solutions is ongoing and will surely lead to a better 
understanding of low-pressure turbine aerodynamics and to better designs. Many questions also 
could be answered by other similar or more extensive calculations: 
 

• To what extent has the scaling of the blade counts changed the solution; how different would 
the true full annulus solution (fourteen times as expensive) be? 

 
• These four stages are the front half of a turbine with seven stages. What are we missing by 

omitting the last three stages? 
 

• This analysis neglects purge flows coming from the interior of the turbine, leaks across the 
roots of the stators, and leaks across the tips of the rotors. Inclusion of these flow features 
would be expensive—probably doubling the total grid size and slowing convergence of the 
solution (because of the low Mach numbers of the leakage flows). What might we learn from 
including purge flows and leakages? 

 
• Are the conclusions we can draw from this case any different from the conclusions we might 

draw for a low-pressure turbine that occupied a different portion of the available design 
space? 
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Figure 1. Low-pressure turbine of a modern, high-bypass jet engine. 
 
 
 
 
 

Inlet 
surface 

Strut 

Figure 3. Mid-frame strut. The mid-
frame strut is not included in the 
calculation but provides pitchwise 
variation at the inlet boundary surface. 

Figure 2. 1/14 wheel sector of the 
turbine: four stages, eight blade 
rows, 67 blade passages,  and 
198,103,040 grid cells. 
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 Uniform Inlet Nonuniform Inlet 
Stage 1 +0.03 -0.49 
Stage 2 -1.27 -0.07 
Stage 3 +0.22 -0.02 
Stage 4 -0.27 +0.00 
Component +0.00 -0.10 

 
 
 
 

Figure 4. Inlet boundary conditions. Left column: varying spanwise, uniform pitchwise; right 
column: varying spanwise and pitchwise. (a) Total pressure, (b) total temperature, (c) tangential 
flow angle. 

a)  Total pressure; approx. 
contour range = 17%. 

b) Total temperature; approx. 
contour range = 9%. 

c) Tangential flow angle; approx. 
contour range = -40 to +5 deg. 

Table 1. Changes in stage and component efficiency (percentage points), unsteady solutions vs. 
steady multistage solution. 
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b) Instantaneous solution 
snapshot, unsteady 
solution #2. 

Figure 5. Static pressure 
at 20% span. 

a) Instantaneous solution 
snapshot, unsteady 
solution #1. 

a) Steady multistage 
solution. 
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c) Instantaneous solution 
snapshot, unsteady 
solution #2. 

b) Instantaneous solution 
snapshot, unsteady 
solution #1. 

a) Steady multistage 
solution. 

Figure 6. Entropy at 20% 
span. 
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Figure 3. Showing the mid-frame strut. 

Figure 7. Spanwise profiles of entropy at the inlet (black) and at the exit of each blade row. Solid 
lines: steady multistage solution; dashed lines: time average of unsteady solution #1 (pitchwise 
uniform inlet conditions). 


